기 술

In Search of Knowledge, Wisdom and Truth

클레이 수학 7대 난제 .. 6. Birch and Swinnerton-Dyer 추측

2010-03-19 2603
Sundance

6. Birch and Swinnerton-Dyer Conjecture (버츠와 스위너톤 - 다이어 추측)


이 문제에서 우리는 다시 리만 가설에서와 마찬가지로 일반적이 수학 영역으로 돌아오게 된다. 고대 그리스 시대 이래 수학자들은 다음과 같은 유형의 대수 방정식의 모든 정수해를 기술하는 문제를 놓고 씨름해왔다.

x² + y² = z² 이 특정한 방정식에 대해서는 유클리드가 완벽한 해답을 제시했다 - 즉 모든 해들을 산출하는 공식을 제시했다. 1944년 와일스는 2보다 큰 임의의 지수n에 대해서 방정식 xn + yn = z^n 이 0이 아닌 정수해를 가지지 않음을 증명했다.(이 결론이 페르마의 마지막 정리이다).

그러나 더 복잡한 방적식들에 대해서는 정수해가 있는지, 혹은 어떤 정수해가 있는지를 밝혀내기가 매우 어렵다. 버치와 스위너톤-다이어 추측은 그 난해한 방정식들 중 한 유형에 대해서 가능한 해들에 관한 정보를 제시한다.

이 문제는 리만 가설과 관련이 있으며, 이 문제가 해결된다면 소수에 대한 우리의 전반적인 이해에 도움이 될 것이다. 이 문제의 해결이 리만 가설 증명처럼 수학 이외의 영역에도 영향을 미칠지 여부는 불분명하다. 버치와 스위너톤-다이어 추측 증명은 수학자에게만 국한된 관심사로 판명될지도 모른다.

그러나 이 문제를 비롯한 많은 수학 문제가 “실용성이 없다”고 판정하는 것은 어리석은 일이다. 물론 “순수 수학”의 추상적 문제들을 연구하는 수학자들은 대개 어떤 실용적인 귀결에서 동기를 얻기보다는 지적 호기심에서 동기를 얻는다. 그러나 순수 수학에서의 발견이 중요한 실용적 귀결을 같는다는 사실은 역사 속에서 누차 입증되었다.

뿐만 아니라 한 문제를 풀기 위해서 수학자들이 개발한 기법들이 전혀 다른 문제들에 응용될 수 있다는 사실이 종종 입증되었다. 와일스가 페르마의 마지막 정리를 증명한 것이 전형적인 그런 사례이다. 이와 유사하게 버치와 스위너톤-다이어 추측의 증명 역시 다른 용도가 발견될 새로운 발상들을 포함할 것이 거의 확실하다.


- 다음 페이지에서 계속 -

source :

바로가기

세계탐험 오버랜드 새포스팅 사진영상 여행정보 세계역사 종교탐구 미국야기 기술생활 트 렌 드 음식조리 영어공부 에 세 이 친구이웃 자료창고