기 술

In Search of Knowledge, Wisdom and Truth

클레이 수학 7대 난제 .. 5. Hodge Conjecture (호지 추측)

2010-03-19 2499
Sundance

5. Hodge Conjecture (호지 추측)


이 문제는 현재 위상학에 결여된 또 하나의 조각이다. 이 일반적인 문제는 어떻게 단순한 대상들로부터 복잡한 수학적 대상을 구성할 수 있는지와 관련된다. 이 문제는 아마도 밀레니엄 문제들 중에서 일반인이 이해하기가 가장 어려운 문제일 것이다.

기반에 있는 직관이 다른 문제들에 의해 덜 분명하거나, 다른 문제들보다 더 난해하기 때문이 아니다. 오히려 일반은이 겸험하게 될 어려움은 호지 추측이 특정한 종류의 추상적 대상들을 분류하기 위해서 수학자들이 사용하는 기법과 관련되기 때문에 발생한다.

호지 추측은 그 분류법의 심층에서 나오며 추상 수준이 높다. 그 추상 수준에 도달하는 유일한 길은 점점 높아지는 추상 수준들을 거쳐 올라가는 길이다. 호지 추측을 향한 길은 20세기 전반기에 수학자들이 복잡한 대상들의 모양을 탐구하는 강력한 방법을 발견하면서 열렸다.

그 방법의 기반에 있는 발상은 주어진 대상의 모양을 단순한 기하학적 벽돌들을 짜맞춤으로서 어느 정도까지 근사시킬 수 있는지를 묻는 것이었다. 그 방법은 매우 유용했고 여러 방식으로 일반화되었다.

수학자들은 그 방버들을 발전히켜 강력한 기법들을 만들어냈다, 결국 많은 다양한 종류의 대상들을 나열한 목록에 도달했다. 하지만 불행하게도 기법들이 일반화 되는 과정에서 기하학적 근원이 흐려졌다, 수학자들은 기하학적 해석이 전혀 없는 대상들도 목록에 포함시켜야 했다.

호지 추측은 중요한 대상들의 집합(투사 대수 다양체projective algebraic varieties라고 불린다)에 대해서는, 호지 회로라고 불리는 조각들이 기하학적 조각들(대수 회로라고 불립니다)의 조합이라고 주장한다.


- 다음 페이지에서 계속 -




source :

바로가기

세계탐험 오버랜드 새포스팅 사진영상 여행정보 세계역사 종교탐구 미국야기 기술생활 트 렌 드 음식조리 영어공부 에 세 이 친구이웃 자료창고